Spraakmaker: a text-to-speech system for the Dutch
language

H.C. van Leeuwen and E. te Lindert

Abstract

Spraakmaker integrates a number of modules resulting from the combined efforts of
several institutes in the Netherlands which aim at doing research in the field of auto-
matic text-to-speech conversion. Spraakmaker is intended as a demonstration model for
Dutch as well as a flexible tool for future research. In its design, Spraakmaker differs
from most other existing text-to-speech systems. This paper first discusses the general
language-independent framework on which Spraakmaker is built, which concerns the da-
ta structure used to store relevant data for the text-to-speech process and the general
means of control. Then Spraakmaker is discussed as a specific implementation, which il-
lustrates the use of the data structure and how linguistic modules operate on this struc-
ture.

Introduction

Under the auspices of the nationally co-ordinated research programme ‘Analysis
and Synthesis of Speech’ (ASSP), a large number of projects have been launched in
the period 1985-1990, covering the whole spectrum of text-to-speech conversion for
the Dutch language. One of the aims of the programme was the ‘production of opera-
tional text-to-speech systems as an intermediate between research and applica-
tions.” Spraakmaker is the text-to-speech system for Dutch which resulted from
this programme and it integrates the linguistic modules resulting from some of the
ASSP projects.

Spraakmaker is a system which is built on a certain framework which can be
characterized by a certain language-independent architecture. In what follows, the
term Spraakmaker refers to the Dutch text-to-speech system as a whole, whereas
its English equivalent Speech Maker refers to the language-independent framework.
In this paper, first the general framework Speech Maker will be discussed, followed
by Spraakmaker, the specific implementation for the Dutch language.

Speech Maker: a framework for text-to-speech systems

Most text-to-speech (TTS) systems consist of a sequential processing structure
and a linear data representation (Carlson & Granstrom, 1976; Kerkhoff, Wester &
Boves, 1984: Kulas & Riihl, 1985; Allen, Hunnicutt & Klatt, 1987; Van Rijnsoever,
1988). A sequential processing structure means the various modules (such as the
grapheme-to-phoneme conversion unit or the intonation contour generation unit) are
called upon in a certain temporal order and do not interact. A linear data representa-
tion means that the information which is transferred from one module to the other is

IPO Annual Progress Report 25 1990
40

coded in a linear way, often by a string of characters. Such a string may contain dif-
ferent pieces of information. For instance, a character string presented for grapheme-
to-phoneme conversion may contain information on sentence accent, morphological
structure and orthography. The Dutch word ‘partijvoorzitterschap’ (English: ‘party
chairmanship’) can be represented for instance as ‘part’ ij#voor%zittJeer%schap’,
where ¢’ denotes word stress, ‘#’ a morphological boundary between compounds
and ‘%’ a morphological boundary between affixes or between a stem and an affix.

In Speech Maker the sequential processing structure is maintained, but the lin-
ear data representation is replaced by a multi-level, synchronized data structure. In
this structure, different types of information (e.g., morphology, orthography, pronunci-
ation, etc.) are represented on different levels. The information on the different levels
is synchronized by so-called sync marks, which are placed between the data items
on each level. For instance, ‘partijvoorzitterschap’ can be represented in Speech
Maker as depicted in Figure 1.

morpheme: stem fix | stem [suffix| suffix
grapheme: plalr tliij vrjn‘r z‘i tIt E.'-l T slc‘hla‘p
syllable: 7 + ~ - T -

Figure 1: An example of how the word ‘partijvoorzitterschap’ is repre-
sented in Speech Maker. Between each data item (e.g., a letter, or a mor-
phological type), a sync mark (a vertical bar) is placed. If the sync
marks are displayed exactly beneath one another, the levels are synchro-
nized at that point. In this representation, the morpheme types are cod-
ed directly (instead of indirectly by the different morphological bound-
ary types), and word stress (as attribute of the syllable structure) is in-
dicated by a more insightful code (‘+’ and ‘-’ instead of *'’). Since
syllable structure and morphological structure do not have a strictly hi-
erarchical relation, they are displayed here beneath and above the graph-
eme level, so that both structures are clearly visible.

11 >uiucwhat more elaborate manner of data representation, which was first intro-
duced by Hertz, Kadin and Karplus (1985), is chosen mainly for two reasons.

(1) We believe that this representation is more transparent. Each level represents
a different type of information. The symbols used at a certain level need not
necessarily be different from those used at the other levels, simply because the
level itself disambiguates. For instance, the presence of sentence accent (i.e.,
which words are to receive accent in the sentence) and word stress (which syl-
lable carries word-internal stress) may both be indicated by ‘+’. In a linear
string, one would have to use different symbols for both types of information.

4]

Moreover, text-to-speech systems are still to be improved, and many aspects
of text-to-speech conversion may have to be changed. More information of a
linguistic nature will become available to the system, which will be increasing-
ly difficult to code transparently in a linear string. For instance, word class de-
termination is closely related to morphological analysis. Word class is needed
for syntactic analysis, which in turn is needed for determination of sentence ac-
cent and pause position. Explicitly separating the different types of information
will considerably enhance its transparency to the user. And we believe a trans-
parent data representation increases comprehension of the system’s internal
state. This in turn will increase the speed with which a developer can make
new modules or improve existing ones, given the correct tools to interact with
such a structure.

(2) Separate modules in the TTS system become more independent of each other.
A certain module is developed at a certain time. It is designed to deal with a
certain kind of input. When a new module is added to a TTS system in which a
linear output string from one module serves as the input to another module, it
is quite possible that the latter will be confronted with input it cannot deal
with. For instance, if the word class of a certain word is noun, and if this is rep-
resented by [n] preceding the orthographic representation of the word, the
grapheme-to-phoneme conversion module will probably not be able to recog-
nize this as information which is not to be pronounced, unless the module is al-
so altered once word class information is added to the system. This is undesir-
able, since it means that each module in the entire TTS system may need to be
adjusted when the system is expanded. In the case of a multi-level data struc-
ture, new types of information can simply be ignored.

1 ne multi-level synchronized data structure

The multi-level synchronized data structure is the heart of Speech Maker. All data
transferred between modules pass through this structure. The (linguistic) data in the
structure are the only data directly accessible to the user. Owing to its two-dimen-
sional aspects, this multi-level synchronized data structure has been called grid.

The abstraction supported by the grid is that of a finite set of streams (in this
we follow the terminology introduced by Hertz et al. (1985)). A stream is a data
structure in which one level of information is represented. The number and nature of
streams can be chosen freely, so long as each stream is identified by a unique name.
For instance, in Figure 1 a grid is depicted which contains three streams, viz. the
morpheme, the grapheme and the syllable stream. In Figure 2, which will be ex-
plained in more detail presently, a larger grid is depicted which contains eight
streams: sentence, int_phrase, word, morpheme, syllable, grapheme, phoneme and
pitch.

To each stream, one or more attributes can be connected. Attributes serve to
specify different aspects of a certain level of information. For instance, the word level
may contain information on parts of speech (noun/verb/...) and on whether or not the
word is to receive accentuation. These aspects both concern the word level and are
therefore coded as different attributes of the word stream. For example, in Figure 2
the word stream has two attributes, ‘class’ and ‘accent’, in which the parts of

42

sentence: declarative

int_phrase:
word.class: | det noun verb p det noun
.accent: | — 23 4 - — - +
morpheme: | stem stem stem stem stem stem Is.uffix
syllable: - B + + - -3 + -
grapheme: |d|e|b|la | 1| v |1 nln glo|v|e|r|d|e]|s clh u t|t i n|g
phon.segm: |d|@|b| A | L | v luxukv@rd@s_lx Ut]|I|N
dur: |46|69]39] 54 [100]154]46|123|69[123|62|54|46]|46|54|77| 77 | 63 | 54 |63]|126
pitch.type: 0 1 & A 0
.anchor: - V.0. - V.0.
.onset: - |=70 — =20 —
dur: ~— 120| — 120 -
eXC: - 6.0 - -6.0 ~

Figure 2: An example of the grid when all analysis modules have operated. The sentence ‘De bal
vloog over de schutting’ has been analysed. In the grid the following information has been stored:
the scope and type of the sentence (sentence stream), the scope of the intonation phrase
(int_phrase), the parts of speech of each word (word.class), accent in the sentence (word.accent),
the morphological structure in each word (morph), the syllable structure and stress pattern of each
word (syllable), the phonemes (phon.segm) their segmental durations in ms (phon.dur), and the rele-
vant pitch movement parameters (pitch). Here ‘0’ denotes low declination, ‘1’ a pitch-lending rise,
‘&’ high declination and ‘A’ a pitch-lending fall. The pitch-lending rise is anchored at the vowel on-
set (v.0.), starts 70 ms before the vowel onset, has a duration of 120 ms, and has an excursion of
6.0 semitones.

speech and sentence accents are stored, respectively. The number and nature of at-
tributes can also be chosen freely, the names of which must be unique within the
stream. If there is only one attribute connected to a stream, the identification of the
attribute may be omitted since, in that case, the stream identification is sufficient.

A stream is a sequence of rokens separated by sync marks. A token contains
one or more fields, one field for each attribute that has been defined for the stream.
For example, in Figure 2 each token of the pitch stream consists of five elements,
the second having the value: (1, v.o., -70, 120, 6.0). When the grid is displayed, the
fields of a token are printed above one another. On each line, the fields of a specific
attribute are printed. Such lines are called substreams, as they represent part of a
level.

A sync mark serves both to separate tokens from each other in an individual
stream, and to synchronize tokens in one stream with those in other streams. Two
(sequences of) tokens in different streams are synchronized if the sync marks in
which they are enclosed are printed above each other. So, for instance, in Figure 2
the token sequence ‘s ¢ h u t t’ in the grapheme stream is synchronized with the to-
ken sequence ‘stem’ in the morpheme stream, and the graphemes ‘c h’ are synchro-
nized with the phoneme ‘x’.

43

The general architecture of Speech Maker is as follows: centrally, the grid con-
tains all data relevant to the derivation of speech from text. On the one hand, all lin-
guistic modules operate on the grid, that is, all modules collect their input data from
the grid (except for the first, which reads the text from some input device) and write
their results back into the grid (except for the last, which produces speech). On the
other hand, a user interface is available to the linguist developer to control Speech
Maker, with which, among other things, one can inspect and change the contents of
the grid at strategic points in the derivation. The general architecture of Speech Mak-

er 1s depicted in Figure 3 (where a specific implementation of linguistic modules is
already shown).

Text input

€ LABEL

e "EXPANDI

- WORD

|
- II PROS

|

GRID

-

- MORPHON

DURATION

i

INTONATION

SYNTHESIS

i

aoo vt

User interface

Speech output

Figure 3: General architecture of Speech Maker.
The eight linguistic modules are called from top
to bottom and communicate via the multi-level
synchronized data structure, called grid.

Control of Speech Maker

By means of the user interface, a linguist who develops linguistic modules can con-
trol Speech Maker. This encompasses three main functions which will be discussed
in order: inspection of the data in the grid, manipulation of these data and control of
the data flow within Speech Maker.

Inspection: After application of each linguistic module the linguist can inspect the
grid to see whether the module has produced the desired results. Since, in a large
text, the grid contains too much information to be grasped by a user in one view, one
can select specific portions of the grid, for instance one sentence at a time, or specific
streams. However, not only can the results of linguistic modules be inspected, but
also the derivation process inside such a module can be inspected if the module sup-
ports such an option. Of course, this facility must be provided by the constructor of
the module, but once such a provision has been made, it is also included in Speech
Maker.

Manipulation: Besides inspecting the momentary status of the grid, one can also
manipulate the information in the grid. In fact, when one inspects the grid, one in-
vokes a specialized ‘grid editor’. With this tool, one can insert, delete or modify to-
kens, and modify the synchronization relations between the streams. The grid editor
can be an important tool in the development of linguistic modules, since one can pre-
pare (and store) a desired input status of the grid independently of whether previous
linguistic modules have operated satisfactorily. On the other hand, when all modules
operate satisfactorily, Speech Maker can be used as a stimulus generator for all
kinds of perceptual experiments concerning artificial speech, since it is very easy to
modify parameters and store produced utterances.

Control of flow: In normal operation, Speech Maker’s input is obtained from a termi-
nal or file, and its output is speech or a waveform written to a file. However, for de-
velopment and testing purposes one can select a portion of the normal processing
trajectory. For instance, to test a specific module, one can instruct the system to
stop processing after this module and display the grid information for inspection, and
simultaneously write it to file. If the results of this module are satisfactory, these
stored grids can serve as input for a testing session of the next module.

A second facility is the possibility of interchanging linguistic modules. For in-
stance, when two alternative modules have been developed, it is possible to ex-
change the one module for the other, run a new session with the same input and
compare the results of the two sessions. This facility operates under the condition
that alternative modules require input which is present in the grid, and produce simi-
lar types of output, so that subsequent modules can operate without adiustment.

These three types of interaction provide a linguist with the most important facilities
to manipulate Speech Maker’s behaviour. The user interface has been implemented
in X-windows, so that the user has a graphics-oriented tool to control the system in
an interactive session. However, all functions can also be achieved by typed-in com-
mands. Thus, also in noninteractive sessions, such as batch jobs, the system can be
instructed to operate as desired.

45

Spraakmaker: a text-to-speech system for Dutch

To build a text-to-speech system with Speech Maker, two things must be defined: a
specific implementation of the grid (i.e., the number and nature of the streams) and
the linguistic modules. This section describes how this has been done for Spraak-
maker. The majority of the linguistic modules in Spraakmaker already existed, so
they were determined historically. As to the implementation of the grid, it was decid-
ed to include only one stream per type of information for reasons of efficiency and
transparency. For instance, the orthography is represented in the grapheme stream.
If an amount of money, such as ‘fl. 2,50°, is encountered in the text, this will be
stored in the grapheme sweam. During the derivation, however, this may be altered
to the normalized string ‘twee gulden vijftig’ (two guilders fifty) which overwrites
the original information in the grapheme stream. The pronunciation, however, will be
represented on a separate level (the phoneme stream) since this is essentially a dif-
ferent type of information. The streams which are distinguished in Spraakmaker are
discussed below, followed by the linguistic modules of the system.

Spraakmaker’s grid
The most important streams in Spraakmaker, in which the information transferred to
the linguistic modules is stored, are:

(a) Sentence stream: indicates the beginning and end of the sentence and its type
(declarative/interrogative).
(b) Intonation stream: indicates the beginning and end boundaries of an intonation

phrase. In the phase of synthesizing speech, a pause will be added between
the intonation phrases and a declination reset will occur at the new phrase.

(c) Word stream: indicates the beginning and end of a word and contains all infor-
mation concerning words. Several substreams are introduced to represent the

different aspects of a word. The most important substreams are:

e word.type substream: indicates whether a word is lexical (the ‘normal’
words, to be dealt with by the morphological analyser), or a numerical ex-
pression, or an acronym (to be dealt with by specialized rule-based expan-
sion modules).

e word.class substream: gives the part of speech (noun/verb/...) of the word.

e word.accent substream; indicates whether or not the word is to receive sen-
tence accent.

(d) Morphological strecam: indicates the morphological structure of a word and the
types (prefix/stem/suffix) of the morphemes.

(e) Syllable stream: gives the syllable structure of a word and indicates whether or
not the syllable bears stress.

(f) Grapheme stream: gives the orthography of a word.

(g) Phoneme stream: gives the phonemic representation of the word. Attached to
each phoneme is an indication of its duration.

(h) Pitch stream: gives the type of pitch movement according to the Dutch intona-
tion grammar of ’t Hart, Collier and Cohen (1990). There are four additional

46

substreams which specify the movement parameters:

e pitch.anchor substream: gives the anchor of the pitch movement (vowel on-
set/end of voicing).

e pitch.onset substream: gives the timing onset relative to the anchor (e.g., a
pitch-lending rise in Dutch usually starts 70 ms before vowel onset).

¢ pitch.duration substream: gives the duration of the pitch movement.

¢ pitch.excursion substream: gives the excursion of the pitch movement (for
instance in semitones).

When all analysis modules have operated, the grid will roughly resemble Figure 2
for the input sentence ‘De bal vloog over de schutting.” (The ball flew over the
fence).

Spraakmaker’s linguistic modules

The second aspect of Spraakmaker’s implementation is the succession of modules
which operate on the grid. Figure 3 shows the current configuration of Speech
Maker. The majority of the modules add information to the grid; only two of them
(EXPAND and MORPHON) overwrite existing information. The modules are present-
ed in the order in which they are called.

(1)

(2)

3)

LABEL: reads text from a file or from the terminal. It marks the beginning and
the end of sentences, words and graphemes and labels sentences and (groups
of) words in the sentence. A wide range of labels is used (abbreviations, tele-
phone numbers, amounts of money, etc.). The grapheme, word.type and sen-
tence streams in the grid are initiated by this module.

EXPAND: deals with the words that have received a special label, like abbrevi-
ation, telephone number, etc. and expands the words into their normalized
form. After the application of this module only three output types are distin-
guished: lexical, numerical, or acronym. This label determines the path which is
chosen 1n the next module, since different pronunciation rules apply to each
type.

For example, after application of LABEL, ‘tel. 050-123456’ is represented in the
grid as:

tel_nr
050 - 123456

word.type: | abbr
grapheme: | tel

EXPAND will alter these data into:

d
56

word.type:| lex [d| d|d]|d
grapheme: | telefoon |0 |50 12|34

where ‘d’ (from ‘digit’) represents a numerical expression.

WORD: deals with several aspects of grapheme-to-phoneme conversion on the
word level. This comprises phonemic representation, word stress, morphologi-
cal and syllable structure and word class. Note that these attributes relate to
different streams in the grid. These different types of output are included in one

47

module for efficiency reasons as it is relatively easy 1O determine them at the
same time. Words marked as lexical items by LABEL/EXPAND must be ana-
lysed morphologically t0 arrive at the correct pronunciation. For this purpose 2
morpheme lexicon is needed, and once one has a lexicon, one can also store
phoneme representation, syllable and stress information. BY combining the
morphemes one can also determine the word class. Nonlexical items (words
marked as numbers and acronyms by LABEL/EXPAND) are dealt with by spe-
cialized, rule-based modules. The input of WORD :s the orthography (the graph-
eme stream), the output is written into the phoneme, syllable, morphology and
word.class streams.

(4) PROS: determines sentence accents and the beginning and end of intonation
phrases. It takes its input from the word.class substream and writes its output
‘o the word.accent and intonation phrase (sub)streams.

(5) MORPHON: adjusts the phnnamic representatinn. It deals with phnnnlngical ef-
fects which surpass morpheme and word boundaries (e.8., ‘reduction’ &
‘reduce’, which cannot be dealt with by WORD). These effects are dealt with by

this phonological module. Input and output are both the phoneme and syllable
streams.

(6) DURATION: determines durations of the phonemes. It takes the phonemes, syl-

lable structure, word Stress and sentence accent as input. Its output is written
to the duration stream.

(7) INTONATION: determines the relevant pitch movement parameters. Input: sen-
tence range, intonation phrase, sentence accent, word Stress; the output 18

written to the pitch movement stream.

(8) SYNTHESIS: determines the speech waveform. As input 1t takes the phonemes,
syllable structure, S€ gmental duration, intonation phrase and pitch movement
parameters. The output (a sampled-data file) can be written t0 a file, and/or 1S

sent to a loudspeaker via a DA converter.

Concluding remarks

with this, most of the important aspects of the general framework, Speech Maker,
and the specific implementation, Spraakmaker, have been discussed. One important
aspect of Speech Maker has not been mentioned, however. This concerns a special-
:7ed rule formalism called SMF (Speech Maker Formalism), with which 2 linguist can
directly manipulate the grid by means of rules. In their layout, the rules reflect the or-
ganization of the grid, that is, the succession of informational units (tokens) in time
is reflected horizontally, and the synchronizatiun between units of different informa-
tional types vertically. By means of such rules a ‘program’ can be built which speci-
fies a sequence of actions operating On the grid, which alter the information in the
grid, or add :nformation to it. Such a program forms a specific linguistic module such
as those which are depicted in Figure 3, The advantages of writing a module in SMF
are that one does not need 2 specific interface between the grid and the linguistic
module (which is the case for most of the current modules) and that the knowledge

concerning a specific linguistic process is specified in a compact and transparent

48

code. Since a detailed discussion of SMF would exceed the space available in this pa-
per, more information can be found in Van Leeuwen and Te Lindert (1991).

In conclusion, Spraakmaker is a text-to-speech system with a flexible underly-
ing framework, Speech Maker. The kernel of this framework is the grid database, in
which relations between data are expressed in an advantageous way. A user inter-
face enables the user to control the system and a formalism allows algorithmic ma-
nipulation of the database. Spraakmaker is a specific implementation for the Dutch
language which comprises eight major linguistic modules.

References

Allen, J., Hunnicutt, S. & Klatt, D. (1987) From Text to Speech: The MiTalk system. Cambridge:
Cambridge University Press.

Carlson, R. & Granstrém, B. (1976) A text-to-speech system based entirely on rules. Proceedings
of ICASSP 76, 686-688.

Hart, J. 't, Collier, R. & Cohen, A. (1990) A perceptual swdy of Intonation. Cambridge: Cam-
bridge University Press.

Hertz, S.R., Kadin, J. & Karplus, K. (1985) The Delta rule development system for speech synthe-
sis from text. Proceedings of the IEEE, 73(11), 1589-1601.

Kerkhoff, J., Wester, J. & Boves, L. (1984) A compiler for implementing the linguistic phase of a
text-to-speech conversion system. In: H. Bennis, W.U.S. van der Kloecke (Eds): Linguistics
in the Netherlands. Dordrecht: Foris Publications, 111-117.

Kulas, W. & Riihl, HW. (1985) Syntex — unrestricted conversion of text-to-speech for German.
In: R. de Moris and C.Y. Suen (Eds): New Systems and Architectures for Automatic Speech
Recognition and Synthesis. Berlin: Springer, 517-535.

Leeuwen, H.C. van & Lindent, E. te (1991) Speech Maker: text-to-speech synthesis based on a multi-
level, synchronized data structure. Proceedings of ICASSP 91, pages unknown,

Rijnsoever, P.A. van (1988) A multi-lingual text-to-speech system. IPO Annual Progress Report,

* 23, 34-40.

49

	spraakmaker90p1.pdf
	spraakmaker90p2.pdf
	spraakmaker90p3.pdf
	spraakmaker90p4.pdf
	spraakmaker90p5.pdf
	spraakmaker90p6.pdf
	spraakmaker90p7.pdf
	spraakmaker90p8.pdf
	spraakmaker90p9.pdf
	spraakmaker90p10.pdf

